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Abstract In this paper, the lower semicontinuity and continuity of the solution mapping
to a parametric generalized vector equilibrium problem involving set-valued mappings are
established by using a new proof method which is different from the ones used in the literature.
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1 Introduction

The vector equilibrium problem is a unified model of several problems, for example, the
vector optimization problem, the vector variational inequality problem, the vector comple-
mentarity problem and the vector saddle point problem. In the literature, existence results
for various types of vector equilibrium problems have been investigated intensively, e.g.,
see [7,11] and the references therein. The stability analysis of the solution mappings for
vector equilibrium problems is another important topic in vector optimization theory. Recently,
the semicontinuity, especially the lower semicontinuity, of the solution mappings for
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parametric vector variational inequalities and parametric vector equilibrium problems has
been intensively studied in the literature, such as [1,2,5,6,8,9,12–14,16–21].

Among many approaches for dealing with the lower semicontinuity and continuity of
solution mappings for parametric vector variational inequalities and parametric vector equi-
librium problems, the scalarization method is of considerable interest. Recently, Cheng and
Zhu [9] have obtained a lower semicontinuity result of the solution mapping to a parametric
vector variational inequality in finite-dimensional spaces by using a scalarization method.
Very recently, by virtue of a density result and scalarization technique, Gong and Yao [13]
have first discussed the lower semicontinuity of the efficient solutions for a parametric vec-
tor equilibrium problem. By using the ideas of Cheng and Zhu [9], Gong [12] has studied
the continuity of the solution mapping for a class of parametric weak vector equilibrium
problems in topological vector spaces. Chen and Li [6] have discussed and improved the
lower semicontinuity and continuity results of the efficient and weak efficient solution sets
for parametric vector equilibrium problems given in the aforementioned papers [13] and [12],
respectively.

Motivated by the work reported in [1,6,9,12], this paper aims to establish the lower
semicontinuity and continuity of the solution mapping to a parametric generalized vector
equilibrium problem (PGVEP) by using a new proof method which is different from the
ones used in [9] and [12]. Our method on lower semicontinuity is based on a scalarization
representation of the solution mapping for (PGVEP) and a property involving the union of a
family of lower semicontinuous set-valued mappings. Moreover, we show that the sufficient
condition which guarantees the lower semicontinuity of the solution mapping is also sufficient
for continuity. The upper semicontinuity of the solution mapping is derived by a scalarization
method, which is also different from the ones used in the literature. Our consequences are
new and include the corresponding results in [9] and [12] as special cases.

The rest of the paper is organized as follows. In Sect. 2, we introduce the problem (PGVEP),
and recall some concepts of semicontinuity and their some properties. In Sect. 3, we discuss
the lower semicontinuity and continuity of the solution mapping for (PGVEP).

2 Preliminaries

Throughout this paper, let X and Y be real Hausdorff topological vector spaces, and let Z be
a real topological space. We also assume that C is a pointed closed convex cone in Y with
its interior intC �= ∅. Let Y ∗ be the topological dual space of Y and let C∗ := { f ∈ Y ∗ |
f (y) ≥ 0,∀y ∈ C} be the dual cone of C .

Suppose that A is a nonempty subset of X and F : A × A → 2Y \{∅} is a set-valued
mapping. We consider the following generalized vector equilibrium problem (GVEP) of
finding x ∈ A such that

F(x, y) ⊂ Y\−intC, ∀y ∈ A.

When the set A and the mapping F are perturbed by a parameter µ which varies over a
set � of Z , we consider the following parametric generalized vector equilibrium problem
(PGVEP) of finding x ∈ A(µ) such that

F(x, y, µ) ⊂ Y\−intC, ∀y ∈ A(µ),

where A : � → 2X\{∅} is a set-valued mapping, F : B × B ×� ⊂ X × X × Z → 2Y \{∅}
is a set-valued mapping with A(�) = ⋃

µ∈� A(µ) ⊂ B.
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Special Cases

(1) Let ϕ : B × B × � → Y and ψ : B × � → Y be vector-valued mappings. Let
F(x, y, µ) = ϕ(x, y, µ) + ψ(y, µ) − ψ(x, µ). Then (PGVEP) reduces to the para-
meterized weak vector equilibrium problem (WVEP)µ considered in [12].

(2) Let X = Rn , Y = R p and C = R p
+. Let gi : B × � → Rn, i = 1, . . . , p and

ψ : B × � → R p be vector-valued mappings. Let F(x, y, µ) = (〈g1(x, µ), y −
x〉, . . . , 〈gp(x, µ), y−x〉) + ψ(y, µ)−ψ(x, µ), where 〈·, ·〉 denotes the inner product
in the Euclidean space. Then, (PGVEP) also reduces to (WVVI)µ considered in [12].
Furthermore, let ψ ≡ 0. Then, (PGVEP) further reduces to the parameterized weak
vector variational inequality considered in [9].

For each µ ∈ �, let S(µ) denote the solution set of (PGVEP), i.e.,

S(µ) = {x ∈ A(µ) | F(x, y, µ) ⊂ Y\−intC, ∀y ∈ A(µ)}.

In this paper, by using a new proof method which is different from the ones used in [9] and
[12], we will discuss the lower semicontinuity and continuity of S(·) as a set-valued mapping
from the set � into X .

Let µ ∈ � and x ∈ A(µ). Define F(x, A(µ), µ) := ⋃
y∈A(µ) F(x, y, µ). Suppose that

� and � are Hausdorff topological spaces and G : � → 2� is a set-valued mapping with
nonempty values.

Definition 2.1 [3]

(i) G is said to be lower semicontinuous (l.s.c) at λ̄ ∈ � if for any open set Q ⊂ � with
G(λ̄) ∩ Q �= ∅, there exists a neighborhood N (λ̄) of λ̄ such that G(λ) ∩ Q �= ∅, for
all λ ∈ N (λ̄).

(ii) G is said to be upper semicontinuous (u.s.c) at λ̄ if for any open set Q ⊂ � with
G(λ̄) ⊂ Q, there exists a neighborhood N (λ̄) of λ̄ such that G(λ) ⊂ Q, for all
λ ∈ N (λ̄).

We say G is l.s.c (resp. u.s.c) on �, if it is l.s.c (resp. u.s.c) at each λ ∈ �. G is said to be
continuous on � if it is both l.s.c and u.s.c on �.

Proposition 2.1 [3,10]

(i) G is l.s.c at λ̄ if and only if for any net {λα} ⊂ � with λα → λ̄ and any x̄ ∈ G(λ̄), there
exists xα ∈ G(λα) such that xα → x̄ .

(ii) If G has compact values (i.e., G(λ) is a compact set for each λ ∈ �), then G is u.s.c at
λ̄ if and only if for any net {λα} ⊂ � with λα → λ̄ and for any xα ∈ G(λα), there exist
x̄ ∈ G(λ̄) and a subnet {xβ} of {xα}, such that xβ → x̄ .

The following lemma plays an important role in the proof of the lower semicontinuity of
the solution mapping S(·).
Lemma 2.1 [4, Theorem 2, p. 114] The union � = ⋃

i∈I �i of a family of l.s.c set-valued
mappings�i from a topological space X into a topological space Y is also an l.s.c set-valued
mapping from X into Y , where I is an index set.
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3 Lower semicontinuity and continuity

For each f ∈ C∗\{0} and for each µ ∈ �, let S f (µ) denote the set of f -efficient solutions
to (PGVEP), i.e.,

S f (µ) =
{

x ∈ A(µ) | inf
z∈F(x,y,µ)

f (z) ≥ 0, ∀y ∈ A(µ)

}

.

Throughout this section, assume that S f (µ) �= ∅ for all f ∈ C∗\{0} and µ ∈ �. To ensure
the existence, we give a kind of sufficient conditions as an example.

For each f ∈ C∗\{0}, let V f denote the set of f -efficient solutions to (GVEP), i.e.,

V f =
{

x ∈ A | inf
z∈F(x,y)

f (z) ≥ 0, ∀y ∈ A

}

.

A set-valued mapping E : A → 2A is called a KKM-mapping if co{x1, . . . , xn} ⊂⋃n
i=1 E(xi ) for any finite subset {x1, . . . , xn} of A, where co(D) denotes the convex hull of

the set D.
The set-valued mapping G : A → 2Y is said to be C-convex on A if for any x1, x2 ∈ A

and λ ∈ [0, 1], λG(x1)+ (1 − λ)G(x2) ⊂ G(λx1 + (1 − λ)x2)+ C .

Proposition 3.1 Suppose that the following conditions are satisfied:
(i) A is a nonempty compact convex set;

(ii) For each y ∈ A, F(·, y) is l.s.c on A, and for each x ∈ A, F(x, ·) has nonempty compact
values on A;

(iii) F(x, x) ⊂ C, for all x ∈ A, and F(x, ·) is C-convex on A.

Then, for each f ∈ C∗\{0}, V f �= ∅.

Proof Define M : A → 2A by

M(y) =
{

x ∈ A | inf
z∈F(x,y)

f (z) ≥ 0

}

, ∀y ∈ A.

We first prove that for any y ∈ A, M(y) is a closed set. Let xα ∈ M(y) and xα → x0.
Then x0 ∈ A since A is compact. Let gy(x) = inf z∈F(x,y) f (z) = − supz∈F(x,y)(− f (z)). It
follows from xα ∈ M(y) that

gy(xα) = inf
z∈F(xα,y)

f (z) ≥ 0. (1)

Since f is continuous and F(·, y) is l.s.c at x0, by Proposition 19 of [3, Sect. 3–1, p. 118],
gy(·) is upper semicontinuous at x0. It follows from (1) that

inf
z∈F(x0,y)

f (z) = gy(x0) ≥ lim sup
xα→x0

gy(xα) ≥ 0.

Thus, x0 ∈ M(y). So M(y) is a closed set. Moreover, since M(y) ⊂ A and A is compact,
M(y) is also a compact set.

Next, we show that M is a KKM-mapping. Suppose it is false. Then there exist a finite
subset {y1, . . . , yn} ⊂ A and t1, . . . , tn ≥ 0 with

∑n
i=1 ti = 1 such that ȳ = ∑n

i=1 ti yi �∈⋃n
i=1 M(yi ). Then, for each i ∈ {1, 2, . . . , n}, ȳ �∈ M(yi ), i.e.,

inf
z∈F(ȳ,yi )

f (z) < 0.
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Since f is continuous and F(ȳ, ·) is a compact set, for each i ∈ {1, 2, . . . , n}, there exists
zi ∈ F(ȳ, yi ) such that

f (zi ) = min
z∈F(ȳ,yi )

f (z) < 0. (2)

From the condition (iii), we have

n∑

i=1

ti zi ∈
n∑

i=1

ti F(ȳ, yi ) ⊂ F(ȳ, ȳ)+ C ⊂ C + C ⊂ C.

By the linearity of f and f ∈ C∗\{0}, we get

n∑

i=1

ti f (zi ) = f (
n∑

i=1

ti zi ) ≥ 0.

On the other hand, it follows from ti ≥ 0, i = 1, 2, . . . , n, with
∑n

i=1 ti = 1 and (2) that

n∑

i=1

ti f (zi ) < 0,

a contradiction. Hence, M is a KKM-mapping.
By the well-known Ky Fan lemma (e.g., see Lemma 2.2 of [14]),

⋂
y∈A M(y) �= ∅. Thus,

V f = ⋂
y∈A M(y) �= ∅. 
�

From Proposition 3.1, we have the following result on the existence of S f readily.

Proposition 3.2 For each µ ∈ �, suppose that the following conditions are satisfied:
(i) A(µ) is a nonempty compact convex set;

(ii) For each y ∈ A(µ), F(·, y, µ) is l.s.c on A(µ), and for each x ∈ A(µ), F(x, ·, µ) has
nonempty compact values on A(µ);

(iii) F(x, x, µ) ⊂ C, for all x ∈ A(µ), and F(x, ·, µ) is C-convex on A(µ).

Then, for each f ∈ C∗\{0} and µ ∈ �, S f (µ) �= ∅.

Now we establish the lower semicontinuity and continuity of S(·) to (PGVEP).

Lemma 3.1 For each µ ∈ �, if for each x ∈ A(µ), F(x, A(µ), µ)+ C is a convex set, then

S(µ) =
⋃

f ∈C∗\{0}
S f (µ).

Proof “⊃” Let x ∈ ⋃
f ∈C∗\{0} S f (µ). Then there exists f ′ ∈ C∗\{0} such that x ∈ S f ′(µ).

Therefore, x ∈ A(µ) and inf z∈F(x,y,µ) f ′(z) ≥ 0, ∀y ∈ A(µ). Whence, we get ∀y ∈ A(µ)
and ∀z ∈ F(x, y, µ), f ′(z) ≥ 0, which deduces that z �∈ −intC . Otherwise, if z ∈ −intC ,
then it follows from f ′ ∈ C∗\{0} that f ′(z) < 0, a contradiction. Thus, by the arbitrariness
of z, we obtain F(x, y, µ) ⊂ Y\−intC, ∀y ∈ A(µ), and hence x ∈ S(µ).

“⊂” Let x ∈ S(µ). Then x ∈ A(µ) and F(x, y, µ) ⊂ Y\−intC , ∀y ∈ A(µ). Thus,

F(x, A(µ), µ) ∩ (−intC) = ∅,
and hence,

(F(x, A(µ), µ)+ C) ∩ (−intC) = ∅.
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Because F(x, A(µ), µ) + C is a convex set, by the well-known Eidelheit’s separation
theorem (see [15, Theorem 3.16]), there exist a continuous linear functional f ∈ Y ∗\{0} and
a real number γ such that

f (ĉ) < γ ≤ f (z + c),

for all z ∈ F(x, A(µ), µ), c ∈ C and ĉ ∈ −intC . Since C is a cone, we get f (ĉ) ≤ 0 for
all ĉ ∈ −intC . Thus, f (ĉ) ≥ 0 for all ĉ ∈ C , that is, f ∈ C∗. Moreover, it follows from
c ∈ C , ĉ ∈ −intC and the continuity of f that f (z) ≥ 0 for all z ∈ F(x, A(µ), µ). Thus,
∀y ∈ A(µ), we have inf z∈F(x,y,µ) f (z) ≥ 0, i.e., x ∈ S f (µ) ⊂ ⋃

f ∈C∗\{0} S f (µ). 
�
Lemma 3.2 Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact values on �;
(ii) F is u.s.c with nonempty compact values on B × B ×�;

(iii) F(·, ·, µ) is C-strictly monotone on A(µ) × A(µ) for any given µ ∈ �, i.e., for all
x, y ∈ A(µ) and x �= y, F(x, y, µ)+ F(y, x, µ) ⊂ −intC.

Then, for each f ∈ C∗\{0}, S f (·) is l.s.c on �.

Proof Suppose to the contrary that there exist f ∈ C∗\{0} and µ0 ∈ � such that S f (·) is
not l.s.c at µ0. Then there exist {µα} with µα → µ0 and x0 ∈ S f (µ0), such that for any
xα ∈ S f (µα), xα �→ x0.

Since A(·) is l.s.c at µ0, there exists a net x̄α ∈ A(µα) such that x̄α → x0. For any
yα ∈ S f (µα), because A(·) is u.s.c at µ0 with compact values, there exist y0 ∈ A(µ0) and a
subnet {yβ} of {yα} such that yβ → y0. It follows from x0 ∈ S f (µ0) and y0 ∈ A(µ0) that

inf
z∈F(x0,y0,µ0)

f (z) ≥ 0.

Since f is continuous and F(x0, y0, µ0) is a compact set, there exists z0x ∈ F(x0, y0, µ0)

such that

f (z0x ) = min
z∈F(x0,y0,µ0)

f (z) ≥ 0. (3)

On the other hand, since yβ ∈ S f (µβ) and x̄β ∈ A(µβ), we get inf z∈F(yβ ,x̄β ,µβ) f (z) ≥ 0.
Since f is continuous and F(yβ, x̄β, µβ) is a compact set, there exists zβ ∈ F(yβ, x̄β, µβ)
such that

f (zβ) = min
z∈F(yβ ,x̄β ,µβ)

f (z) ≥ 0. (4)

Because F(·, ·, ·) is u.s.c at (y0, x0, µ0)with compact values, there exists z0y ∈ F(y0, x0, µ0)

such that zβ → z0y (taking a subnet if necessary). It follows from the continuity of f and
(4) that

f (z0y) ≥ 0. (5)

By (3), (5) and the linearity of f , we get

f (z0x + z0y) = f (z0x )+ f (z0y) ≥ 0. (6)

Assume that y0 �= x0. Since F(·, ·, µ0) is C-strictly monotone on A(µ0) × A(µ0), we
have

F(x0, y0, µ0)+ F(y0, x0, µ0) ⊂ −intC.
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Then it follows from f ∈ C∗\{0} and z0x + z0y ∈ −intC that

f (z0x + z0y) < 0,

which contradicts (6). Therefore, y0 = x0. This is impossible by the contradiction assumption.

�

Theorem 3.1 Suppose that the following conditions are satisfied:
(i) A is continuous with nonempty compact values on �;

(ii) F is u.s.c with nonempty compact values on B × B ×�;
(iii) F(·, ·, µ) is C-strictly monotone on A(µ)× A(µ) for any given µ ∈ �;
(iv) For each µ ∈ � and for each x ∈ A(µ), F(x, ·, µ) is C-convexlike on A(µ), i.e., for

any x1, x2 ∈ A(µ) and any ρ ∈ [0, 1], there exists x3 ∈ A(µ) such that ρF(x, x1, µ)

+ (1 − ρ)F(x, x2, µ) ⊂ F(x, x3, µ)+ C.

Then, S(·) is l.s.c on �.

Proof For each µ ∈ � and for each x ∈ A(µ), since F(x, ·, µ) is C-convexlike on A(µ),
F(x, A(µ), µ)+ C is a convex set. Thus, by virtue of Lemma 3.1, for each µ ∈ �, it holds
that

S(µ) =
⋃

f ∈C∗\{0}
S f (µ).

It follows from Lemma 3.2 that for each f ∈ C∗\{0}, S f (·) is l.s.c on �. Thus, in view of
Lemma 2.1, we obtain that S(·) is l.s.c on �. 
�
The following example illustrates that the assumption (iii) in Theorem 3.1 is essential.

Example 3.1 Let X = Z = R, Y = R2, � = [−1, 1] and C = R2+. Suppose that

A(µ) = [0, 1], F(x, y, µ) = (µx(y − x), x(y − x)), B = [0, 1], and µ0 = 0.

Then the assumptions (i) and (ii) in Theorem 3.1 are clearly satisfied. It can be checked that
for each µ ∈ � and for each x ∈ A(µ), F(x, ·, µ) is R2+-convex on A(µ), i.e., for every
y1, y2 ∈ A(µ) and t ∈ [0, 1],

t F(x, y1, µ)+ (1 − t)F(x, y2, µ) ∈ F(x, t y1 + (1 − t)y2, µ)+ R2+.

Thus, the assumptions (iv) of Theorem 3.1 holds. However, the assumption (iii) in Theorem
3.1 is violated, since for any x, y ∈ A(µ0) and x �= y,

F(x, y, µ0)+ F(y, x, µ0) = (µ0(2xy − x2 − y2), 2xy − x2 − y2)

= (0, 2xy − x2 − y2)

�∈ −intR2+.

It follows from a direct computation that

S(µ) =
{ [0, 1], if µ ∈ [−1, 0].

{0}, if µ ∈ (0, 1],
Clearly, we see that S(·) is not l.s.c at µ0 = 0. Hence, the assumption (iii) in Theorem 3.1 is
essential.
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Proposition 3.3 If F has nonempty compact values on B × B × � and F(·, ·, µ) is
C-strictly monotone on A(µ) × A(µ) for any given µ ∈ �, then for each f ∈ C∗\{0},
S f (·) is a singleton on �.

Proof Suppose that there exists f ∈ C∗\{0} such that S f (·) is not a singleton on �. Then
there exist µ ∈ � and x1, x2 ∈ S f (µ) satisfying x1 �= x2. Thus we have x1, x2 ∈ A(µ) and

inf
z∈F(x1,x2,µ)

f (z) ≥ 0,

and

inf
z∈F(x2,x1,µ)

f (z) ≥ 0.

Since f is continuous and F(x1, x2, µ) is a compact set, there exists z1 ∈ F(x1, x2, µ) such
that

f (z1) = min
z∈F(x1,x2,µ)

f (z) ≥ 0. (7)

Similarly, there exists z2 ∈ F(x2, x1, µ) such that

f (z2) = min
z∈F(x2,x1,µ)

f (z) ≥ 0. (8)

It follows from (7), (8) and the linearity of f that

f (z1 + z2) ≥ 0.

By the C-strict monotonicity of F , we have z1 + z2 ∈ −intC . Since f ∈ C∗\{0}, f (z1 + z2)

< 0, which leads to a contradiction. 
�
Following the ideas of Cheng and Zhu [9] (see also Gong [12]), we have another proof of

Theorem 3.1 based on the fact of Proposition 3.3 as follows.

Another Proof of Theorem 3.1 For each fixed µ ∈ �, take arbitrary x ∈ S(µ) = ⋃
f ∈C∗\{0}

S f (µ) and {µα} with µα → µ. Then there exists f ′ ∈ C∗\{0} such that {x} = S f ′(µ),
because S f ′(µ) is a singleton by Proposition 3.3. In view of Lemma 3.2 and Proposition 3.3,
S f ′(·) is continuous at µ, since S f ′(·) is single-valued. Hence, there exists {xα} = S f ′(µα)
such that xα → x . Since xα ∈ ⋃

f ∈C∗\{0} S f (µα) = S(µα), by Proposition 2.1(i), we obtain
that S(·) is l.s.c at µ. By the arbitrariness of µ ∈ �, S(·) is l.s.c on �. 
�
Remark 3.1 Our approach on the lower semicontinuity of the solution mapping S(·) is totally
different from the ones used by Gong [12] and Cheng and Zhu [9] (cf. the above proof). In
our approach, Lemma 2.1 plays an essential role, which allows us to treat S f as a set-valued
mapping directly. In fact, because the C-strict monotonicity of F is imposed, we see that
S f is single-valued (Proposition 3.3), which plays key roles in [12] and [9]. Obviously, our
approach does not rely on whether S f is single-valued or not. In addition, compared with [9]
and [12], the uniform compactness of A is not required (for more details, see [6]), and the
C-convexity of F is generalized to the C-convexlikeness.

Furthermore, we point out that under the assumptions of Theorem 3.1, the solution map-
ping S(·) is continuous. We remark that the upper semicontinuity of S(·) is derived by a
scalarization method, which is different from the methods with respect to the upper semi-
continuity of solution mappings used in the literature, such as [1,9,12,14,17].
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Theorem 3.2 Suppose that all conditions of Theorem 3.1 are satisfied. Then, S(·) is contin-
uous on �.

Proof We shall prove that for each µ ∈ �, S(·) is u.s.c at µ. Suppose that there exists
some µ0 ∈ � such that S(·) is not u.s.c at µ0. Then there exist an open set M satisfying
S(µ0) ⊂ M , and nets µα → µ0 and xα ∈ S(µα), such that xα �∈ M , ∀α.

By Lemma 3.1, we have that xα ∈ S(µα) = ⋃
f ∈C∗\{0} S f (µα). Thus there exists f ′ ∈

C∗\{0} such that {xα} = S f ′(µα), as S f ′(µα) is a singleton by Proposition 3.3. Let {x0} =
S f ′(µ0). Since S f ′(·) is continuous at µ0 by Lemma 3.2 and Proposition 3.3, we obatin that
xα → x0. It follows from xα �∈ M and the openness of M that x0 �∈ M , which contradicts
the fact that x0 ∈ ⋃

f ∈C∗\{0} S f (µ0) = S(µ0) ⊂ M . 
�
From Theorem 3.2, we have the following corollaries readily. The results improve Theorem
4.2 and Corollary 5.1 of [12], respectively, because the uniform compactness of A is not
required.

Corollary 3.1 Letψ : B ×� → Y and ϕ : B × B ×� → Y be mappings. Let F(x, y, µ) =
ϕ(x, y, µ)+ ψ(y, µ)− ψ(x, µ). Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact values on �;
(ii) ψ is continuous on B ×� and ϕ is continuous on B × B ×�;

(iii) ϕ(·, ·, µ) is C-strictly monotone on A(µ)× A(µ) for any given µ ∈ �;
(iv) For each µ ∈ � and for each x ∈ A(µ), ϕ(x, ·, µ)+ψ(·, µ) is C-convexlike on A(µ).

Then, S(·) is continuous on �.

Corollary 3.2 Let X = Rn, Y = R p and C = R p
+. Let gi : B ×� → Rn, i = 1, . . . , p and

ψ : B × � → R p be mappings. Let F(x, y, µ) = (〈g1(x, µ), y − x〉, . . . , 〈gp(x, µ), y −
x〉)+ ψ(y, µ)− ψ(x, µ). Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact values on �;
(ii) ψ and gi , i = 1, . . . , p are continuous on B ×�;

(iii) gi (·, µ), i = 1, . . . , p are strictly monotone on A(µ) for any given µ ∈ �, i.e., for all
x, y ∈ A(µ) and x �= y, 〈gi (x, µ)− gi (y, µ), x − y〉 > 0, i = 1, . . . , p;

(iv) For each µ ∈ �, ψ(·, µ) is R p
+-convex on A(µ).

Then, S(·) is continuous on �.
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